Laboratory for ASTR UN1403. Projects include observations with the departments telescopes, computer simulation, laboratory experiments in spectroscopy, and the analysis of astronomical data. Lab 1 ASTR UN1903 - goes with ASTR BC1753, ASTR UN1403 or ASTR UN1453.
Laboratory for ASTR UN1404. Projects include use of telescopes, laboratory experiments in the nature of light, spectroscopy, and the analysis of astronomical data. Lab 2 ASTR UN1904 - goes with ASTR BC1754 or ASTR UN1404 (or ASTR UN1836 or ASTR UN1420).
Corequisites: Calculus I or the equivalent
Fundamental laws of mechanics. Kinematics, Newtons laws, work and energy, conservation laws, collisions, rotational motion, oscillations, gravitation. PLEASE NOTE: Students who take PHYS BC2001 may not get credit for PHYS BC2009 or PHYS BC2010.
PHYS BC2010 Mechanics - Lecture Only is required as a pre- or co-requisite for this lab.
Fundamental laws of mechanics. Kinematics, Newton's laws, work and energy, conservation laws, collisions, rotational motion, oscillations, gravitation. This is a calculus-based class. Familiarity with derivatives and integrals is needed.
Prerequisites: Physics BC2002 or the equivalent. Corequisites: Calculus III. Nonlinear pendula, transverse vibrations-elastic strings, longitudinal sound waves, seismic waves, electromagnetic oscillations - light, rainbows, haloes, the Green Flash; polarization phenomena - Haidingers Brush, Brewsters angle, double refraction, optical activity; gravity - capillary waves; interference, diffraction, lenses - mirrors. PLEASE NOTE: Students who take PHYS BC3001 may not receive credit for PHYS BC3010.
Prerequisites: (PHYS BC2002) Calculus III Nonlinear pendula, transverse vibrations-elastic strings, longitudinal sound waves, seismic waves, electromagnetic oscillations & light, rainbows, haloes, the Green Flash; polarization phenomena - Haidinger's Brush, Brewster's angle, double refraction, optical activity; gravity & capillary waves; interference, diffraction, lenses & mirrors.
Classical electromagnetic wave phenomena via Maxwells equations, including: (i) Michaelson and Fabry-Perot Interferometry, as well as a thin-film interference and elementary dispersion theory; (ii) Fraunhofer Diffraction (and a bit of Fresnel); (iii) Wireless Telegraphy I: AM Radio Receivers; and (iv) Wireless Telegraphy II: AM Transmitters. Last two labs pay homage to relevant scientific developments in the period 1875-1925, from the discovery of Hertzian waves to the Golden Age of Radio. Complements PHYS W3008 Electromagnetic Waves and Optics.