This course is a one-semester journey across cosmological history, from the beginning of time to something akin to its end. We will explore the origin of inanimate physical structures (the cosmos as a whole, as well as that of galaxies, stars, planets, particles, atoms and complex molecules), the origin of life (replicating molecules, the first cells, as well as more complex life forms), the origin of mind (self-reflective conscious awareness) and the origin of culture (language, myth, religion, art, and science). We will then consider what science in particular tells us about the very far future, where we will encounter the likely demise of all complex matter, all life and all consciousness. In the face of such disintegration we will examine the nature of value and purpose. We will recognize that the deepest understanding of reality emerges from blending all of the accounts we discuss—from the reductionist to the humanist to the cosmological—and only through such amalgamation can we fully grasp the long-standing human search for meaning.
The proposed independent study is a one-semester course that is in dialogue with the Origins
and Meaning, Physics UN1111. Students in the independent study will further explore various
issues raised in Origins and Meaning by (a) meeting once per week with the instructor, (b)
completing a selection of readings and viewings, and (c) completing an end-of-term writing
assignment.
Prerequisites: some basic background in calculus or be concurrently taking MATH UN1101 Calculus I. The accompanying laboratory is PHYS UN1291-UN1292 The course will use elementary concepts from calculus. The accompanying laboratory is PHYS UN1291 - UN1292. Basic introduction to the study of mechanics, fluids, thermodynamics, electricity, magnetism, optics, special relativity, quantum mechanics, atomic physics, and nuclear physics.
Corequisites: PHYS UN1201 This course is the laboratory for the corequisite lecture course and can be taken only during the same term as the corresponding lecture.
Corequisites: PHYS UN1201 This course is the laboratory for the corequisite lecture course and can be taken only during the same term as the corresponding lecture.
Corequisites: PHYS UN1201 This course is the laboratory for the corequisite lecture course and can be taken only during the same term as the corresponding lecture.
Corequisites: PHYS UN1201 This course is the laboratory for the corequisite lecture course and can be taken only during the same term as the corresponding lecture.
Corequisites: PHYS UN1201 This course is the laboratory for the corequisite lecture course and can be taken only during the same term as the corresponding lecture.
Corequisites: PHYS UN1201 This course is the laboratory for the corequisite lecture course and can be taken only during the same term as the corresponding lecture.
Corequisites: PHYS UN1201 This course is the laboratory for the corequisite lecture course and can be taken only during the same term as the corresponding lecture.
Corequisites: PHYS UN1201 This course is the laboratory for the corequisite lecture course and can be taken only during the same term as the corresponding lecture.
Corequisites: MATH UN1101 Fundamental laws of mechanics, kinematics and dynamics, work and energy, rotational dynamics, oscillations, gravitation, fluids, temperature and heat, gas laws, the first and second laws of thermodynamics. Corequisite: MATH UN1101 or the equivalent.
Prerequisites: PHYS UN1402 PHYS W1402. Corequisites: MATH V1201 or the equivalent. Classical waves and the wave equation, Fourier series and integrals, normal modes, wave-particle duality, the uncertainty principle, basic principles of quantum mechanics, energy levels, reflection and transmission coefficients, applications to atomic physics.
Prerequisites: PHYS W1401 and W1402. Laboratory work associated with the two prerequisite lecture courses. Experiments in mechanics, thermodynamics, electricity, magnetism, optics, wave motion, atomic physics, and nuclear physics. Note: Students cannot receive credit for both PHYS W1493 and W1494.
Prerequisites: Corequisite: MATH UN1102 Calculus II or equivalent. Fundamental laws of mechanics, kinematics and dynamics, work and energy, rotational dynamics, oscillations, gravitation, fluids, introduction to special relativity and relativistic kinematics. The course is preparatory for advanced work in physics and related fields.
Prerequisites: PHYS UN1402 or PHYS UN1602 Corequisite: MATH UN1202 or equivalent. Classical waves and the wave equation, geometrical optics, interference and diffraction, Fourier series and integrals, normal modes, wave-particle duality, the uncertainty principle, basic principles of quantum mechanics, energy levels, reflection and transmission coefficients, the harmonic oscillator. The course is preparatory for advanced work in physics and related fields.
Prerequisites: Advanced Placement in physics and mathematics, or the equivalent, and the instructor's permission. (A special placement meeting is held during Orientation.) This accelerated two-semester sequence covers the subject matter of PHYS UN1601, PHYS UN1602 and PHYS UN2601, and is intended for those students who have an exceptionally strong background in both physics and mathematics. The course is preparatory for advanced work in physics and related fields. There is no accompanying laboratory; however, students are encouraged to take the intermediate laboratory, PHYS UN3081, in the following year.
Prerequisites: general physics, and differential and integral calculus. Electrostatics and magnetostatics, Laplace's equation and boundary-value problems, multipole expansions, dielectric and magnetic materials, Faraday's law, AC circuits, Maxwell's equations, Lorentz covariance, and special relativity.
A detailed study of a selected field of active research in physics. The motivation, techniques, and results obtained to the present, as well as the difficulties and unsolved problems. For Physics majors only. Priority given to seniors; juniors by permission of the instructor.
Prerequisites: phys UN2601 or phys un2802 Primarily for junior and senior physics majors; other majors must obtain the instructors permission. Each experiment is chosen by the student in consultation with the instructor. Each section meets one afternoon per week, with registration in each section limited by the laboratory capacity. Experiments (classical and modern) cover topics in electricity, magnetism, optics, atomic physics, and nuclear physics.