An introduction to capital markets and investments providing an overview of financial markets and tools for asset valuation. Topics covered include the pricing of fixed-income securities (treasury markets, interest rate swaps futures, etc.), discussions on topics in credit, foreign exchange, sovereign ad securitized markets—private equity and hedge funds, etc.
ESG (Environmental, Social and Corporate Governance) Finance is a rapidly growing area of Investment Management – and Finance more broadly – that has received a lot of attention in the past several years from the investor community, financial regulatory agencies, and the general public alike. This course provides an introduction to ESG Finance from a financial engineer’s perspective. This course also discusses proliferation of newly available data sources and the associated quantitative techniques necessary to process those. A major component of this course is a discussion of Climate Risk, an area of particular focus due to its increasing general importance. The course includes an overview of both recent research and the evolving regulatory landscape in the climate risk space. An in-depth discussion of financial impact assessment of various climate risk-driven scenarios (climate risk stress testing) concludes the course.
In this course, we will cover the basics of mathematical modeling of interest rates and credit derivatives. In the first part, we will cover basic interest rate derivatives, the Heath-Jarrow-Morton (HJM)
framework, classic short rate models (for both interest rates and default intensities), and the numerical techniques used in practice for their calibration. In the second part, we will cover the basics
of single-name derivatives modeling, and we will discuss pricing simple credit derivatives. We will also discuss correlation products and the most common techniques used for their pricing. In the third part, we will discuss some recent research papers addressing the use of adjoint algorithmic differentiation for the calculation of risk for interest rate and credit derivatives.
The search for better performance has led investors to explore Alternative Investments that are outside the traditional categories of exchange traded equities, Treasury Bonds, and other
investment-grade fixed income products. The field of Alternative Investments covers a wide range of products such as convertible bonds, Preferred Shares, Hedge Funds, Venture Capital, and
Cryptocurrencies. There is a growing need in the market for students with knowledge of these products and the practical and theoretical know how of valuing and risk managing these investments given that each product has it own nuances and anomalies. This course presents and studies some major Alternative Investment products and ways to evaluate and risk manage them.
Foreign exchange market and its related derivative instruments—the latter being forward contracts, futures, options, and exotic options. What is unusual about foreign exchange is that although it can rightfully claim to be the largest of all financial markets, it remains an area where very few have any meaningful experience. Virtually everyone has traded stocks, bonds, and mutual funds. Comparatively few individuals have ever traded foreign exchange. In part that is because foreign exchange is an interbank market. Ironically the foreign exchange markets may be the best place to trade derivatives and to invent new derivatives—given the massive two-way flow of trading that goes through bank dealing rooms virtually 24 hours a day. And most of that is transacted at razor-thin margins, at least comparatively speaking, a fact that makes the foreign exchange market an ideal platform for derivatives. The emphasis is on familiarizing the student with the nature of the foreign exchange market and those factors that make it special among financial markets, enabling the student to gain a deeper understanding of the related market for derivatives on foreign exchange.
Prerequisite(s): IEOR E4700. Conceptual and practical understanding of structured and hybrid products from the standpoint of relevant risk factors, design goals and characteristics, pricing, hedging, and risk management. Detailed analysis of the underlying cash-flows, embedded derivative instruments, and various structural features of these transactions, both from the investor and issuer perspectives, and analysis of the impact of the prevailing market conditions and parameters on their pricing and risk characteristics. Numerical methods for valuing and managing risk of structured/hybrid products and their embedded derivatives and their application to equity, interest rates, commodities and currencies, inflation, and credit-related products. Conceptual and mathematical principles underlying these techniques, and practical issues that arise in their implementations in the Microsoft Excel/VBA and other programming environments. Special contractual provisions encountered in structured and hybrid transactions, and incorporation of yield curves, volatility smile, and other features of the underlying processes into pricing and implementation framework for these products.
Covers C++ programming language, applications, and features for financial engineering, and quantitative finance applications. Note: restricted to IEOR MS FE students only.
Selected topics of interest in area of quantitative finance. Some topics include energy derivatives, experimental finance, foreign exchange and related derivative instruments, inflation derivatives, hedge fund management, modeling equity derivatives in Java, mortgage-backed securities, numerical solutions of partial differential equations, quantitative portfolio management, risk management, trade and technology in financial markets. Note: open to IEOR students only.
Introduces risk management principles, practical implementation and applications, standard market, liquidity, and credit risk measurement techniques, and their drawbacks and limitations. Note: restricted to IEOR students only.
Degree requirement for all MSFE first-year students. Topics in Financial Engineering. Past seminar topics include Evolving Financial Intermediation, Measuring and Using Trading Algorithms Effectively, Path-Dependent Volatility, Artificial Intelligence and Data Science in modern financial decision making, Risk-Based Performance Attribution, and Financial Machine Learning. Meets select Monday evenings.
Primer on quantitative and mathematical concepts. Required of all incoming MSFE students.
Prerequisite(s): Approval by a faculty member who agrees to supervise the work. Independent work involving experiments, computer programming, analytical investigation, or engineering design.
Prerequisite(s): Approval by a faculty member who agrees to supervise the work. Independent work involving experiments, computer programming, analytical investigation, or engineering design.
Theory and geometry of linear programming. The simplex method. Duality theory, sensitivity analysis, column generation and decomposition. Interior point methods. Introduction to nonlinear optimization: convexity, optimality conditions, steepest descent, and Newton’s method, active set, and barrier methods.
Discusses recent advances in fields of machine learning: kernel methods, neural networks (various generative adversarial net architectures), and reinforcement learning (with applications in robotics). Quasi Monte Carlo methods in the context of approximating RBF kernels via orthogonal transforms (instances of the structured technique). Will discuss techniques such as TD(0), TD(λ), LSTDQ, LSPI, DQN.
Advanced treatment of stochastic modeling in the context of queueing, reliability, manufacturing, insurance risk, financial engineering and other engineering applications. Review of elements of probability theory; exponential distribution; renewal theory; Wald’s equation; Poisson processes. Introduction to both discrete and continuous-time Markov chains; introduction to Brownian motion.
Selected topics in IEOR. Content varies from year to year. May be repeated for credit.
Selected topics in IEOR. Content varies from year to year. May be repeated for credit.
Selected topics in IEOR. Content varies from year to year. May be repeated for credit.
Selected topics in IEOR. Content varies from year to year. May be repeated for credit.
Selected topics in IEOR. Content varies from year to year. May be repeated for credit.
Selected topics in IEOR. Content varies from year to year. May be repeated for credit.
Before registering, the student must submit an outline of the proposed work for approval by the supervisor and the chair of the Department. Advanced study in a specialized field under the supervision of a member of the department staff. May be repeated for credit.
Before registering, the student must submit an outline of the proposed work for approval by the supervisor and the chair of the Department. Advanced study in a specialized field under the supervision of a member of the department staff. May be repeated for credit.