May be repeated for up to 6 points of credit. Graduate-level projects in various areas of electrical engineering and computer science. In consultation with an instructor, each student designs his or her project depending on the students previous training and experience. Students should consult with a professor in their area for detailed arrangements no later than the last day of registration.
Operation and modeling of MOS transistors. MOS two- and three-terminal structures. The MOS transistor as a four-terminal device; general charge-sheet modeling; strong, moderate, and weak inversion models; short-and-narrow-channel effects; ion-implanted devices; scaling considerations in VLSI; charge modeling; large-signal transient and small-signal modeling for quasistatic and nonquasistatic operation.
Principles behind the implementation of millimeter-wave (30GHz-300GHz) wireless circuits and systems in silicon-based technologies. Silicon-based active and passive devices for millimeter-wave operation, millimeter-wave low-noise amplifiers, power amplifiers, oscillators and VCOs, oscillator phase noise theory, mixers and frequency dividers for PLLs. A design project is an integral part of the course.
Modern power management integrated circuits (PMIC) design introduced comperhensively. Advanced topics in power management introduced, including linear regulators, digital linear regulators, switch-mode power converters, control schemes for DC-DC converters, compensation methods of DC-DC converters, power losses in DC-DC converters, switched capacitor converters, power converter modeling and simulation, design examples.
Electro-optics: principles; electro-optics of liquid crystals and photo-refractive materials. Nonlinear optics: second-order nonlinear optics; third-order nonlinear optics; pulse propagation and solitons. Acousto-optics: interaction of light and sound; acousto-optic devices. Photonic switching and computing: photonic switches; all-optical switches; bistable optical devices. Introduction to fiber-optic communications: components of the fiber-optic link; modulation, multiplexing and coupling; system performance; receiver sensitivity; coherent optical communications.
An introduction to fundamental concepts of quantum optics and quantum electrodynamics with an emphasis on applications in nanophotonic devices. The quantization of the electromagnetic field; coherent and squeezed states of light; interaction between light and electrons in the language of quantum electrodynamics (QED); optical resonators and cavity QED; low-threshold lasers; and entangled states of light.
Introduction to optical interconnects and interconnection networks for digital systems. Fundamental optical interconnects technologies, optical interconnection network design, characterization, and performance evaluation. Enabling photonic technologies including free-space structures, hybrid and monolithic integration platforms for photonic on-chip, chip-to-chip, backplane, and node-to-node interconnects, as well as photonic networks on-chip.
Selected advanced topics in smart electric energy. Content varies from year to year.
Selected advanced topics in smart electric energy. Content varies from year to year.
Selected advanced topics in data-driven analysis and computation. Content varies from year to year, and different topics rotate through the course numbers 6690 to 6699.
Selected advanced topics in data-driven analysis and computation. Content varies from year to year, and different topics rotate through the course numbers 6690 to 6699.
Selected advanced topics in data-driven analysis and computation. Content varies from year to year, and different topics rotate through the course numbers 6690 to 6699.
Analytical approach to the design of (data) communication networks. Necessary tools for performance analysis and design of network protocols and algorithms. Practical engineering applications in layered Internet protocols in Data link layer, Network layer, and Transport layer. Review of relevant aspects of stochastic processes, control, and optimization.
Mathematical models, analyses of economics and networking interdependencies in the internet. Topics include microeconomics of pricing and regulations in communications industry, game theory in revenue allocations, ISP settlements, network externalities, two-sided markets. Economic principles in networking and network design, decentralized vs. centralized resource allocation, “price of anarchy,” congestion control. Case studies of topical internet issues. Societal and industry implications of internet evolution.
Further study of areas such as communication protocols and architectures, flow and congestion control in data networks, performance evaluation in integrated networks. Content varies from year to year, and different topics rotate through the course numbers 6770 to 6779.
Further study of areas such as communication protocols and architectures, flow and congestion control in data networks, performance evaluation in integrated networks. Content varies from year to year, and different topics rotate through the course numbers 6770 to 6779.
Advanced topics in signal processing, such as multidimensional signal processing, image feature extraction, image/video editing and indexing, advanced digital filter design, multirate signal processing, adaptive signal processing, and wave-form coding of signals. Content varies from year to year, and different topics rotate through the course numbers 6880 to 6889.
Advanced topics in signal processing, such as multidimensional signal processing, image feature extraction, image/video editing and indexing, advanced digital filter design, multirate signal processing, adaptive signal processing, and wave-form coding of signals. Content varies from year to year, and different topics rotate through the course numbers 6880 to 6889.
Advanced topics spanning electrical engineering and computer science such as speech processing and recognition, image and multimedia content analysis, and other areas drawing on signal processing, information theory, machine learning, pattern recognition, and related topics. Content varies from year to year, and different topics rotate through the course numbers 6890 to 6899.
Advanced topics spanning electrical engineering and computer science such as speech processing and recognition, image and multimedia content analysis, and other areas drawing on signal processing, information theory, machine learning, pattern recognition, and related topics. Content varies from year to year, and different topics rotate through the course numbers 6890 to 6899. Topic: Big Data Analytics.
Advanced topics spanning electrical engineering and computer science such as speech processing and recognition, image and multimedia content analysis, and other areas drawing on signal processing, information theory, machine learning, pattern recognition, and related topics. Content varies from year to year, and different topics rotate through the course numbers 6890 to 6899.
Advanced topics spanning electrical engineering and computer science such as speech processing and recognition, image and multimedia content analysis, and other areas drawing on signal processing, information theory, machine learning, pattern recognition, and related topics. Content varies from year to year, and different topics rotate through the course numbers 6890 to 6899. Topic: Quantum Computing and Communication.
Selected topics in electrical and computer engineering. Content varies from year to year, and different topics rotate through the course numbers 6900 to 6909.
This proposed course allows for a variety of potential advanced courses to be taught as part of the proposed concentration on control.