May be repeated for up to 6 points of credit. Graduate-level projects in various areas of electrical engineering and computer science. In consultation with an instructor, each student designs his or her project depending on the students previous training and experience. Students should consult with a professor in their area for detailed arrangements no later than the last day of registration.
Principles behind the implementation of millimeter-wave (30GHz-300GHz) wireless circuits and systems in silicon-based technologies. Silicon-based active and passive devices for millimeter-wave operation, millimeter-wave low-noise amplifiers, power amplifiers, oscillators and VCOs, oscillator phase noise theory, mixers and frequency dividers for PLLs. A design project is an integral part of the course.
Modern power management integrated circuits (PMIC) design introduced comperhensively. Advanced topics in power management introduced, including linear regulators, digital linear regulators, switch-mode power converters, control schemes for DC-DC converters, compensation methods of DC-DC converters, power losses in DC-DC converters, switched capacitor converters, power converter modeling and simulation, design examples.
Electro-optics: principles; electro-optics of liquid crystals and photo-refractive materials. Nonlinear optics: second-order nonlinear optics; third-order nonlinear optics; pulse propagation and solitons. Acousto-optics: interaction of light and sound; acousto-optic devices. Photonic switching and computing: photonic switches; all-optical switches; bistable optical devices. Introduction to fiber-optic communications: components of the fiber-optic link; modulation, multiplexing and coupling; system performance; receiver sensitivity; coherent optical communications.
Selected advanced topics in data-driven analysis and computation. Content varies from year to year, and different topics rotate through the course numbers 6690 to 6699.
Selected advanced topics in data-driven analysis and computation. Content varies from year to year, and different topics rotate through the course numbers 6690 to 6699.
Selected advanced topics in data-driven analysis and computation. Content varies from year to year, and different topics rotate through the course numbers 6690 to 6699.
Analytical approach to the design of (data) communication networks. Necessary tools for performance analysis and design of network protocols and algorithms. Practical engineering applications in layered Internet protocols in Data link layer, Network layer, and Transport layer. Review of relevant aspects of stochastic processes, control, and optimization.
Mathematical models, analyses of economics and networking interdependencies in the internet. Topics include microeconomics of pricing and regulations in communications industry, game theory in revenue allocations, ISP settlements, network externalities, two-sided markets. Economic principles in networking and network design, decentralized vs. centralized resource allocation, “price of anarchy,” congestion control. Case studies of topical internet issues. Societal and industry implications of internet evolution.
Further study of areas such as communication protocols and architectures, flow and congestion control in data networks, performance evaluation in integrated networks. Content varies from year to year, and different topics rotate through the course numbers 6770 to 6779.
Further study of areas such as communication protocols and architectures, flow and congestion control in data networks, performance evaluation in integrated networks. Content varies from year to year, and different topics rotate through the course numbers 6770 to 6779.
Advanced topics in signal processing, such as multidimensional signal processing, image feature extraction, image/video editing and indexing, advanced digital filter design, multirate signal processing, adaptive signal processing, and wave-form coding of signals. Content varies from year to year, and different topics rotate through the course numbers 6880 to 6889.
Advanced topics in signal processing, such as multidimensional signal processing, image feature extraction, image/video editing and indexing, advanced digital filter design, multirate signal processing, adaptive signal processing, and wave-form coding of signals. Content varies from year to year, and different topics rotate through the course numbers 6880 to 6889.
Advanced topics spanning electrical engineering and computer science such as speech processing and recognition, image and multimedia content analysis, and other areas drawing on signal processing, information theory, machine learning, pattern recognition, and related topics. Content varies from year to year, and different topics rotate through the course numbers 6890 to 6899.
Advanced topics spanning electrical engineering and computer science such as speech processing and recognition, image and multimedia content analysis, and other areas drawing on signal processing, information theory, machine learning, pattern recognition, and related topics. Content varies from year to year, and different topics rotate through the course numbers 6890 to 6899. Topic: Big Data Analytics.
Advanced topics spanning electrical engineering and computer science such as speech processing and recognition, image and multimedia content analysis, and other areas drawing on signal processing, information theory, machine learning, pattern recognition, and related topics. Content varies from year to year, and different topics rotate through the course numbers 6890 to 6899.
Advanced topics spanning electrical engineering and computer science such as speech processing and recognition, image and multimedia content analysis, and other areas drawing on signal processing, information theory, machine learning, pattern recognition, and related topics. Content varies from year to year, and different topics rotate through the course numbers 6890 to 6899. Topic: Quantum Computing and Communication.
Selected topics in electrical and computer engineering. Content varies from year to year, and different topics rotate through the course numbers 6900 to 6909.
Analysis, modeling and design of transceiver architectures for wireless communication and sensing. Fundamentals of RF system analysis and design. Introduction to discrete-time behavioral modeling of transceiver analog blocks and digital methods for compensating analog impairments. Topics include transceiver architectures for ultra-low power communication, high-throughput sub-THz communication and compressed-sampling architectures for energy-efficient wideband spectrum sensing and rapid direction-of-arrival finding.
Selected topics in electrical and computer engineering. Content varies from year to year, and different topics rotate through the course numbers 6900 to 6909.
Topics to help CS/CE and EE graduate students’ communication skills. Emphasis on writing, presenting clear, concise proposals, journal articles, conference papers, theses, and technical presentations. Credit may not be used to satisfy degree requirements.
May be repeated for credit, but no more than 3 total points may be used for degree credit. Only for electrical engineering and computer engineering graduate students who include relevant off-campus work experience as part of their approved program of study. Final report required. May not be taken for pass/fail credit or audited.
May be taken more than once, since the content changes from year to year, electing different topics from control theory such as learning and repetitive control, adaptive control, system identification, Kalman filtering, etc.
Points of credit to be approved by the department. Requires submission of an outline of the proposed research for approval by the faculty member who is to supervise the work of the student. The research facilities of the department are available to qualified students interested in advanced study.
Theoretical and experimental studies of semiconductor physics, devices, and technology.