Unconventional, alternative energy resources. Technological options and their role in the world energy markets. Comparison of conventional and unconventional, renewable and nonrenewable energy resources and analysis of the consequences of various technological choices and constraints. Economic considerations, energy availability, and the environmental consequences of large-scale, widespread use of each particular technology. Introduction to carbon dioxide capture and carbon dioxide disposal as a means of sustaining the fossil fuel option.
A quantitative introduction to hydrologic and hydraulic systems, with a focus on integrated modeling and analysis of the water cycle and associated mass transport for water resources and environmental engineering. Coverage of unit hydrologic processes such as precipitation, evaporation, infiltration, runoff generation, open channel and pipe flow, subsurface flow and well hydraulics in the context of example watersheds and specific integrative problems such as risk-based design for flood control, provision of water, and assessment of environmental impact or potential for non-point source pollution. Spatial hydrologic analysis using GIS and watershed models.
Sources of solid/gaseous air pollution and the technologies used for modern methods of abatement. Air pollution and its abatement from combustion of coal, oil, and natural gas and the thermodynamics of heat engines in power generation. Catalytic emission control is contrasted to thermal processes for abating carbon monoxide, hydrocarbons, oxides of nitrogen and sulfur from vehicles and stationary sources. Processing of petroleum for generating fuels. Technological challenges of controlling greenhouse gas emissions. Biomass and the hydrogen economy coupled with fuel cells as future sources of energy.
Experiments on fundamental aspects of Earth and environmental engineering with emphasis on the applications of chemistry, biology and thermodynamics to environmental processes: energy generation, analysis and purification of water, environmental biology, and biochemical treatment of wastes. Students will learn the laboratory procedures and use analytical equipment firsthand, hence demonstrating experimentally the theoretical concepts learned in class.
This course may be repeated for credit, but no more than 3 points of this course may be counted towards the satisfaction of the B. S. degree requirements. Candidates for the B.S. degree may conduct an investigation in Earth and Environmental Engineering, or carry out a special project under the supervision of EAEE faculty. Credit for the course is contingent on the submission of an acceptable thesis or final report. This course cannot substitute for the Undergraduate design project (EAEE E3999x or EAEE E3999y)
Obtained internship and approval from faculty adviser. Written application must be made prior to registration outlining proposed internship and study program. Final reports required. May not be taken for pass/fail credit or audited. Fieldwork credits may not count toward any major core, technical elective, and nontechnical requirements. International students must also consult with the International Students and Scholars Office. Note: only for EAEE undergraduate students who need relevant off-campus work experience as a part of their program of study as determined by instructor.
Students must enroll for both 3998x and 3999y during their senior year. Selection of an actual problem in Earth and environmental engineering, and design of an engineering solution including technical, economic, environmental, ethical, health and safety, social issues. Use of software for design, visualization, economic analysis, and report preparation. Students may work in teams. Presentation of results in a formal report and public presentation.
An engineering and economic analysis of past, present and future energy resources. Technological options and their role in the world energy markets. Understanding limits of energy and power density and its impact of resource adoption and feasibility. Comparison of renewable and non-renewable energy resources and analysis of the consequences of various technological choices and constraints. Economic considerations, energy availability, and the environmental consequences of large-scale, widespread use of each particular technology. Critical analysis of carbon dioxide capture and carbon dioxide disposal as a means of sustaining the fossil fuel options in comparison to dramatic increase of electrified resources.
Principles of physical chemistry applied to equilibria and kinetics of aqueous solutions in contact with minerals and anthropogenic residues. The scientific background for addressing problems of aqueous pollution, water treatment, and sustainable production of materials with minimum environmental impact. Hydrolysis, oxidation-reduction, complex formation, dissolution and precipitation, predominance diagrams; examples of natural water systems, processes for water treatment and for the production of inorganic materials from minerals.
Basic concepts of spatial data representation and organization, and analytical tools are introduced and applied in a form of case studies from hydrology, environmental conservation, and emergency response to natural or man-made hazards, among others. Technical content includes geographic topics (map projections, cartography, etc.), spatial statistics, database design and use, interpolation and visualization of spatial surfaces and volumes, and multi-criteria decision analysis. Students will learn the basics of ArcGIS Pro, Model Builder and Python. Elective term projects or final exams emphasize spatial information synthesis towards the solution of a specific problem.
Basic concepts of spatial data representation and organization, and analytical tools are introduced and applied in a form of case studies from hydrology, environmental conservation, and emergency response to natural or man-made hazards, among others. Technical content includes geographic topics (map projections, cartography, etc.), spatial statistics, database design and use, interpolation and visualization of spatial surfaces and volumes, and multi-criteria decision analysis. Students will learn the basics of ArcGIS Pro, Model Builder and Python. Elective term projects or final exams emphasize spatial information synthesis towards the solution of a specific problem.
Fundamentals of water pollution and wastewater characteristics. Chemistry, microbiology, and reaction kinetics. Design of primary, secondary, and advanced treatment systems. Small community and residential systems.
Fundamentals of water pollution and wastewater characteristics. Chemistry, microbiology, and reaction kinetics. Design of primary, secondary, and advanced treatment systems. Small community and residential systems.
Cross disciplinary interfacial engineering principles and applications in sustainable energy and material science. Surface science and systems analysis across different technology sectors - material production and processing, waste management, device manufacture, composites, coatings, ceramics, membranes, biomaterials, and microelectronics.
Detailed study of the chemical and physicochemical principles underlying separations in development of earth resources in a safe and sustainable manner. Covers wide-range of solid-solid, solid-liquid and liquid-liquid separations used in processing of mineral resources. Interfacial
science and engineering principles of important industrial processes of flotation, flocculation, dewatering, interfacial transport, magnetic/gravity/electrostatic separations, solvent extraction, solid-support extraction, crystallization and precipitation. Emphasis on concepts in interfacial chemistry and concepts associated with 'mines of the future' framework.
Quantitative introduction to hydrologic and hydraulic systems, with a focus on integrated modeling and analysis of the water cycle and associated mass transport for water resources and environmental engineering. Coverage of unit hydrologic processes such as precipitation, evaporation, infiltration, runoff generation, open channel and pipe flow, subsurface flow and well hydraulics in the context of example watersheds and specific integrative problems such as risk-based design for flood control, provision of water, and assessment of environmental impact or potential for non-point source pollution. Spatial hydrologic analysis using GIS and watershed models.
Engineering aspects of problems involving human interaction with the natural environment. Review of fundamental principles that underlie the discipline of environmental engineering, i.e. constituent transport and transformation processes in environmental media such as water, air, and ecosystems. Engineering applications for addressing environmental problems such as water quality and treatment, air pollution emissions, and hazardous waste remediation. Presented in the context of current issues facing the practicing engineers and government agencies, including legal and regulatory framework, environmental impact assessments, and natural resource management.
Introduction parametric and non-parametric statistical models applied to climate and environmental data analysis. Time and space data analysis methods will be focused, including clustering, autoregressive models, trend analysis, Bayesian analysis, missing data imputation, geostatistics, principal components analysis. Application to problems of climate variation and change; hydrology; air, water and soil pollution dynamics; disease propagation; ecological change; and resource assessment. The class requires the use of R with hands-on programmings and a term project applied to a current environmental data analysis problem.
Principles and practice of water treatment and utility management will be presented. Project-based class where students will work in teams to solve an issue for a water utility. Variety of external experts will lecture and serve as a resource for students for the project. Allows students to better understand the role of the water utility in providing safe drinking water in a sustainable manner. Students will become familiar with the challenges facing water utilities, gain knowledge in the design and operation of water treatment systems, and learn how to develop solutions to water supply and water quality issues which will allow them to pursue productive careers in the consulting, utility, or regulatory fields.
Major technologies to store carbon dioxide, geological, ocean, and in the carbon chemical pool. Carbon dioxide transport technologies also covered. In addition to basic science and engineering challenges of each technology, full spectrum of economic, environmental, regulatory, and political/policy aspects, and their implication for regional and global carbon management strategies of the future. Combination of lectures, class debates and breakout groups, student presentations, and independent final projects.
Introduction to various CO2 utilization and conversion technologies that can reduce the overall carbon footprint of commodity chemicals and materials. Fundamentals of thermodynamics, fluid mechanics, reaction kinetics, catalysis and reactor design will be discussed using technological examples such as enhanced oil recovery, shale fracking, photo and electrochemical conversion of CO2 to chemical and fuels, and formation of solid carbonates and their various uses. Life cycle analyses of potential products and utilization schemes will also be discussed, as well as the use of renewable energy for CO2 conversion.
Research work culminating in a creditable dissertation on a problem of a fundamental nature selected in conference between student and adviser. Wide latitude is permitted in choice of a subject, but independent work of distinctly graduate character is required in its handling.
All graduate students are required to attend the departmental colloquium as long as they are in residence. Advanced doctoral students may be excused after three years of residence. No degree credit is granted.
Graduate research directed toward solution of a problem in mineral processing or chemical metallurgy
A candidate for the Eng.Sc.D. degree in mineral engineering must register for 12 points of doctoral research instruction. Registration in EAEE E9800 may not be used to satisfy the minimum residence requirement for the degree.