Capstone projects afford a group of students the opportunity to undertake complex, real-world, client-based projects for nonprofit organizations, supervised by a Nonprofit Management program faculty member. Through the semester-long capstone project, students will experience the process of organizational assimilation and integration as they tackle a discrete management project of long or short-term benefit to the client organization. The larger theoretical issues that affect nonprofit managers and their relationships with other stakeholders, both internal and external, will also be discussed within the context of this project-based course.
Digital, social, and mobile media continue to heavily impact every aspect of sports business, often in profound and unanticipated ways, particularly in managing and optimizing revenue streams. All revenue line items are fully intertwined and integrated with each other, media, sponsorship, ticketing, hospitality, concessions and licensing, etc. Students of this course will learn to analyze and optimize the ecosystem of sports business including content rights, ticketing, sponsorship, merchandising, marketing, etc., as well as make business analytics decisions by leveraging business analytics software to run scenario analysis.
This course is intended to provide a mechanism to MA students in Statistics who undertake on-campus project work or research. The course may be signed up with a faculty member from the Department of Statistics for academic credit. Students seeking to enroll in the course should identify an on-campus project and a congenial faculty member whose research is appealing to them, and who are able to serve as their mentor. Students should then submit an application to enroll in this course, which will be reviewed and approved by the Faculty Director of the MA in Statistics program.
This course is intended to provide a mechanism to MA students in Statistics who undertake on-campus project work or research. The course may be signed up with a faculty member from the Department of Statistics for academic credit. Students seeking to enroll in the course should identify an on-campus project and a congenial faculty member whose research is appealing to them, and who are able to serve as their mentor. Students should then submit an application to enroll in this course, which will be reviewed and approved by the Faculty Director of the MA in Statistics program.
This course is intended to provide a mechanism to MA students in Statistics who undertake on-campus project work or research. The course may be signed up with a faculty member from the Department of Statistics for academic credit. Students seeking to enroll in the course should identify an on-campus project and a congenial faculty member whose research is appealing to them, and who are able to serve as their mentor. Students should then submit an application to enroll in this course, which will be reviewed and approved by the Faculty Director of the MA in Statistics program.
This course is intended to provide a mechanism to MA students in Statistics who undertake on-campus project work or research. The course may be signed up with a faculty member from the Department of Statistics for academic credit. Students seeking to enroll in the course should identify an on-campus project and a congenial faculty member whose research is appealing to them, and who are able to serve as their mentor. Students should then submit an application to enroll in this course, which will be reviewed and approved by the Faculty Director of the MA in Statistics program.
Prerequisites: GR5203; GR5204 &GR5205 and at least 4 approved electives This course is an elective course for students in the M.A. in Statistics program that counts towards the degree requirements. To receive a grade and academic credits for this course, students are expected to engage in approved off-campus internships that can be counted as an elective. Statistical Fieldwork should provide students an opportunity to apply their statistical skills and gain practical knowledge on how statistics can be applied to solve real-world challenges.
While this course is designed to introduce students to the fundamentals of clinical ethics and the basic terminology and framework of ethical analysis in biomedical ethics, it offers a more sociological perspective, putting the contemporary clinical issues into a broader context. We will look briefly at the development of clinical ethics and its impact on hospital care and doctor-patient relationships, on the prevailing autonomy norm and its critique. The course then focuses on issues encountered in clinical practice such as informed consent, patient capacity, decision-making, end of life, advance directives, medical futility, pediatrics ethics, maternal-fetal conflicts, organ transplantation, cultural competence and diversity of beliefs and others. The course will examine the role of the clinical ethics consultant (CEC) and assignments will mimic the work that CECs may perform in the hospital setting. Over the span of the semester, students become familiar with the ethical questions surrounding major topics in the clinic with a practical case-based approach toward ethics dilemmas and ethics consultation. During the semester, students in New York attend a meeting of the adult or pediatric ethics committees of New York Presbyterian and Morgan Stanley Children's Hospital or another area hospital, as well as ethics lectures given at the medical center. Students are expected to complete five case write-ups using a template that will be given by the instructor. Students will be using these cases to refine and hone their ethical analysis skills and to show their knowledge of law, policy and ethical principles and how they might apply to each situation.
While this course is designed to introduce students to the fundamentals of clinical ethics and the basic terminology and framework of ethical analysis in biomedical ethics, it offers a more sociological perspective, putting the contemporary clinical issues into a broader context. We will look briefly at the development of clinical ethics and its impact on hospital care and doctor-patient relationships, on the prevailing autonomy norm and its critique. The course then focuses on issues encountered in clinical practice such as informed consent, patient capacity, decision-making, end of life, advance directives, medical futility, pediatrics ethics, maternal-fetal conflicts, organ transplantation, cultural competence and diversity of beliefs and others. The course will examine the role of the clinical ethics consultant (CEC) and assignments will mimic the work that CECs may perform in the hospital setting. Over the span of the semester, students become familiar with the ethical questions surrounding major topics in the clinic with a practical case-based approach toward ethics dilemmas and ethics consultation. During the semester, students in New York attend a meeting of the adult or pediatric ethics committees of New York Presbyterian and Morgan Stanley Children's Hospital or another area hospital, as well as ethics lectures given at the medical center. Students are expected to complete five case write-ups using a template that will be given by the instructor. Students will be using these cases to refine and hone their ethical analysis skills and to show their knowledge of law, policy and ethical principles and how they might apply to each situation.
This seminar is a step-by-step introduction to scholarly research in the field of History and Literature. In the course of the seminar, students will carry out the initial research and draft the prospectus for their MA thesis.
Prerequisites: familiarity with Brownian motion, Itô's formula, stochastic differential equations, and Black-Scholes option pricing. Prerequisites: Familiarity with Brownian motion, Itô's formula, stochastic differential equations, and Black-Scholes option pricing. Nonlinear Option Pricing is a major and popular theme of research today in quantitative finance, covering a wide variety of topics such as American option pricing, uncertain volatility, uncertain mortality, different rates for borrowing and lending, calibration of models to market smiles, credit valuation adjustment (CVA), transaction costs, illiquid markets, super-replication under delta and gamma constraints, etc. The objective of this course is twofold: (1) introduce some nonlinear aspects of quantitative finance, and (2) present and compare various numerical methods for solving high-dimensional nonlinear problems arising in option pricing.
The Tax Planning course explores the various methods of the U.S. tax system, its development, its applicability to individual (and corporate) taxpayers, and steps taxpayers of various income and wealth levels take to determine,
meet, and minimize their tax obligations, depending on their goals. Students will learn how to identify sources, nature, and taxability of taxpayers’ income and gains, to determine the deductibility of any expenses they incur to reduce income, identify credits they may have to offset taxes due, understand filing and payment obligations, and apply the methods of minimizing tax - avoidance, deferral, and use of lower brackets or realization by other taxpayers.
Prerequisites: EESC GU5400, EESCGU5401. The dynamics of environment and society interact with climate and can be modified through use of modern climate information. To arrive at the best use of climate information, there is a need to see climate in a balanced way, among the myriad of factors at play. Equally, there is a need to appreciate the range of climate information available and to grasp its underlying basis and the reasons for varying levels of certainty. This includes subseasonal to seasonal climate forecasts for developing climate services for better adapting to climate stresses, and decadal and climate change projections for improved climate policy. Many decisions in society are at more local scales, and regional climate information considered at appropriate scales and appropriately translated to be accessible and salient to stakeholders is key. Students will build a sufficient understanding of the science behind the information, and analyze examples of how the information can and is being used. This course will prepare the ground for a holistic understanding needed for wise use of climate information.
This seminar is focused on practical applications of climate information and research. The objective of the course is to teach students to integrate their understanding of climate science, social science, policy studies, and communications to address real world problems, especially those they will encounter in academia or on the job after graduation.
This interdisciplinary course focuses on the social, demographic, economic, political, environmental, and climatic factors that shape mobility as well as the legal categories of international mobility (e.g., migrant versus refugee), exploring underlying drivers of the various types of migration – from forced to voluntary – in order to better understand current and future trends.
TBA
TBA
As climate related disasters continue to grow, the impacts of climate change and sustainable development on disaster threats and vulnerabilities are increasingly pronounced. Many of those in the field of disaster management are having to contend with increasing frequency and severity of disasters. Concurrently, disaster risk reduction and response frameworks are struggling to meet the challenge of 21st century disasters. At the same time, the field of disaster research is generating new insights into how the built environment, social structures, and ecological dynamics are intersecting to set the stage for disaster vulnerability, and thus can be better engineered for resilience. As this field continues to evolve, many who many not necessarily identify as disaster managers are also increasingly involved in disaster management in some capacity. With this, the dynamics of disaster risk reduction and disaster management are essential in working with communities and negotiating development activities in ways that are inclusive of a broad range of values, goals and incentive structures.
Tech Arts Lab associated with Practical Production II.
This course is designed as an elective to the Climate and Society Master of Arts degree program. The purpose of this course is to prepare those entering the climate policy and practice workforce for addressing these challenges and solutions by providing an overview of the fields of economic and housing recovery within the context of climate change and climate driven disasters.
This class is designed to equip students with the most effective means of communicating about climate change for various types of audiences in the context of the current media landscape. After learning key foundational concepts of communications; understanding different types of media, audiences, messengers, and framing; and developing one’s own theory of change to structure strategic communications narratives, students will produce their own communications materials that aim to animate or persuade people into taking various types of climate action.
The Social Impact: Business, Society, and the Natural Environment course explores the relationship between corporations, society, and the natural environment. Specifically, it examines the ways in which governments, (for-profit and non-profit) organizations, and investors (fail to) have positive impact and manage issues where the pursuit of private goals is deemed inconsistent with the public interest.
Advanced introduction to classical sentential and predicate logic. No previous acquaintance with logic is required; nonetheless a willingness to master technicalities and to work at a certain level of abstraction is desirable. Note: Due to significant overlap, students may receive credit for only one of the following three courses: PHIL UN3411, UN3415, GR5415.
Tech Arts: Post Production II continues teaching the core techniques for picture and sound editing and the post production workflow process for Columbia Film MFA students. We will cover preparing for a long-form edit, digital script integration, color management and continuity, advanced trimming, and advanced finishing. The hands-on lessons and exercises will be conducted using the industry-standard Non-Linear Editing Systems, Avid Media Composer, and Davinci Resolve. Each week’s class will consist of hands-on demonstrations and self-paced practice using content created by the students and provided by the program.
The Tech Arts curriculum is a hands-on, experiential way for our students to learn best practices regarding film production and post production technology in the integrated first year of the MFA Film Program. The curriculum will be taught in 3 different disciplines/sections with up to 12. Instructors: Matthew Farrell, Michael O’Brien, Gregg Conde The disciplines/sections are: Cameras and Lenses, Grip and Electric, and Cinema Audio. Students will all be required to take one discipline for registration in their first year. Cameras and Lenses, Grip and Electric, and Cinema Audio will educate students on this topics utilizing the cameras and lens equipment offered by Film’s Production Center in Nash. In addition to the practicum workshops students will be required to do specific readings and assignments to maximize their learning of the weekly subject matter and participate in class discussion. Practical Production 1: Lab-Tech Arts Curriculum takes students through the principles of cinematography, lighting, framing, and audio production by working directly with the equipment and technology through small group sections. Technological competency is required to maximize what they are learning through their other classes in directing, screenwriting and producing classes.
The application of Machine Learning (ML) algorithms in the Financial industry is now commonplace, but still nascent in its potential. This course provides an overview of ML applications for finance use cases including trading, investment management, and consumer banking. Students will learn how to work with financial data and how to apply ML algorithms using the data. In addition to providing an overview of the most commonly used ML models, we will detail the regression, KNN, NLP, and time series deep learning ML models using desktop and cloud technologies. The course is taught in Python using Numpy, Pandas, scikit-learn and other libraries. Basic programming knowledge in any language is required.
This course teaches cutting-edge tools and methods that drive investment decisions at quantitative trading firms, and, more generally, firms applying machine learning to big data. The course will combine presentations of theory, immediately followed by in-class Python programming examples using real financial data. The course will develop a general approach to building models of economic and financial processes, with a focus on statistical learning techniques that scale to large data sets. Among the topics covered are lasso, elastic net, cross validation, Bayesian models, the EM algorithm, Support Vector Machines, kernel methods, Gaussian processes, Hidden Markov Models, and neural networks. The final project will lead the students to build a trading strategy based on the techniques learned throughout the course.
Increasingly, issues of medical research and clinical care are posing complex ethical issues not only in the United States, but in other countries in both the industrialized and the developing world. Yet varying economic, political, social, cultural, and historical contexts shape these issues. In diverse contexts in Asia, Africa, Europe and North and South America, practices and policies, along with cultures and moral values, differ enormously. Yet ethical issues are arising not in isolation, but as part of global communities and discourses. In research, multinational pharmaceutical companies are increasingly conducting studies in both industrialized countries and the developing world, posing numerous ethical tensions. In clinical care, uses of reproductive technologies differ across national borders, leading to “reproductive tourism”. End of life care varies widely, reflecting in part differing attitudes toward death and dying. This course examines the political, economic, social, cultural, philosophical, medical, and historical roots and implications of these issues. The course meets once a week online for an hour and a half, and offers extensive live-session interaction and post-session discussion forums to explore the various bioethical issues contemplated throughout the semester.
Impact Finance for Sustainability Practitioners
Students conduct research related to biotechnology under the sponsorship of a mentor within the University. The student and the mentor determine the nature and extent of this independent study. In some laboratories, the student may be assigned to work with a postdoctoral fellow, graduate student or a senior member of the laboratory, who is in turn supervised by the mentor. The mentor is responsible for mentoring and evaluating the students progress and performance. Credits received from this course may be used to fulfill the laboratory requirement for the degree. Instructor permission required. Web site: http://www.columbia.edu/cu/biology/courses/g4500-g4503/index.html
Students conduct research related to biotechnology under the sponsorship of a mentor within the University. The student and the mentor determine the nature and extent of this independent study. In some laboratories, the student may be assigned to work with a postdoctoral fellow, graduate student or a senior member of the laboratory, who is in turn supervised by the mentor. The mentor is responsible for mentoring and evaluating the students progress and performance. Credits received from this course may be used to fulfill the laboratory requirement for the degree. Instructor permission required. Web site: http://www.columbia.edu/cu/biology/courses/g4500-g4503/index.html
Students conduct research related to biotechnology under the sponsorship of a mentor outside the University within the New York City Metropolitan Area unless otherwise approved by the Program. The student and the mentor determine the nature and extent of this independent study. In some laboratories, the student may be assigned to work with a postdoctoral fellow, graduate student or a senior member of the laboratory, who is in turn supervised by the mentor. The mentor is responsible for mentoring and evaluating the students progress and performance. Credits received from this course may be used to fulfill the laboratory requirement for the degree. Instructor permission required. Web site: http://www.columbia.edu/cu/biology/courses/g4500-g4503/index.html
Students conduct research related to biotechnology under the sponsorship of a mentor outside the University within the New York City Metropolitan Area unless otherwise approved by the Program. The student and the mentor determine the nature and extent of this independent study. In some laboratories, the student may be assigned to work with a postdoctoral fellow, graduate student or a senior member of the laboratory, who is in turn supervised by the mentor. The mentor is responsible for mentoring and evaluating the students progress and performance. Credits received from this course may be used to fulfill the laboratory requirement for the degree. Instructor permission required. Web site: http://www.columbia.edu/cu/biology/courses/g4500-g4503/index.html
Prerequisites: all 6 MAFN core courses, at least 6 credits of approved electives, and the instructors permission. See the MAFN website for details. This course provides an opportunity for MAFN students to engage in off-campus internships for academic credit that counts towards the degree. Graded by letter grade. Students need to secure an internship and get it approved by the instructor.
This course will provide a framework with which students can evaluate and understand the global financial services industry of both today and tomorrow. Specifically, the course will present an industry insider's perspectives on the (i) current and future role of the major financial service participants, (ii) key drivers influencing an industry that has always been characterized by significant change (e.g. regulatory, technology, risk, globalization, client needs and product development), and (iii) strategic challenges and opportunities facing today's financial services' CEOs post the 2008/09 financial crisis. Furthermore, this course is designed not only for students with a general interest in the financial system, but for those students thinking about a career in the private sector of financial services or the public sector of regulatory overseers.
This course examines post-financial crisis regulations including Basel III, Fundamental Review of the Trading Book (FRTB), Dodd-Frank Act, Supervision and Regulation Letter 11-7 (SR 11-7), and others. Case studies will explore the technical details of these new rules; and guest lectures from industry experts will bring the material to life. Areas of focus include: model risk management, stress testing, derivatives, and insurance. By the end of this course students will be able to:
Evaluate the purpose and limitations of risk regulations in finance.
Identify and communicate weaknesses in a financial firm.
Communicate with regulators.
Understand Recovery and Resolution Plans or “Living Wills” for a financial firm.
This course examines post-financial crisis regulations including Basel III, Fundamental Review of the Trading Book (FRTB), Dodd-Frank Act, Supervision and Regulation Letter 11-7 (SR 11-7), and others. Case studies will explore the technical details of these new rules; and guest lectures from industry experts will bring the material to life. Areas of focus include: model risk management, stress testing, derivatives, and insurance. By the end of this course students will be able to:
Evaluate the purpose and limitations of risk regulations in finance.
Identify and communicate weaknesses in a financial firm.
Communicate with regulators.
Understand Recovery and Resolution Plans or “Living Wills” for a financial firm.
TBA
This course explores financial derivatives across different asset classes with in-depth analysis of several popular trades including block trades, program trades, vanilla options, digital options, and variance swaps. Their dynamics and risks are explored through Monte Carlo simulation using Excel and Python. The daily decisions and tasks of a frontline risk manager are recreated and students have the opportunity to see which trades they would approve or reject. Students will gain a working knowledge of financial derivatives and acquire technical skills to answer complex questions on the trading floor.
This course explores financial derivatives across different asset classes with in-depth analysis of several popular trades including block trades, program trades, vanilla options, digital options, and variance swaps. Their dynamics and risks are explored through Monte Carlo simulation using Excel and Python. The daily decisions and tasks of a frontline risk manager are recreated and students have the opportunity to see which trades they would approve or reject. Students will gain a working knowledge of financial derivatives and acquire technical skills to answer complex questions on the trading floor.
Given the ever growing reliance on models, Model risk affects financial institutions at almost every level of their organization including pricing, risk, finance, and marketing. Model risk management (MRM) is now one of the primary focuses of operational risk management at modern financial institutions. In this class, the ERM skill sets of risk identification, risk quantification, and risk decision making are applied to the kinds of models seen in large, complex financial institutions. Through readings, lecture, assignments, and in-class discussions, students learn the principles and concepts that a robust MRM function uses to manage model risk.
Given the ever growing reliance on models, Model risk affects financial institutions at almost every level of their organization including pricing, risk, finance, and marketing. Model risk management (MRM) is now one of the primary focuses of operational risk management at modern financial institutions. In this class, the ERM skill sets of risk identification, risk quantification, and risk decision making are applied to the kinds of models seen in large, complex financial institutions. Through readings, lecture, assignments, and in-class discussions, students learn the principles and concepts that a robust MRM function uses to manage model risk.
The exponentially increasing availability of data and the rapid development of information technology and computing power have inevitably made Machine Learning part of the risk manager’s toolkit. But, what are these tools? This class provides the driving intuitions for machine learning. Students will see how many of the algorithms are extensions of what we already do with our human minds. These algorithms include regularized regression, cluster analysis, naive bayes, apriori algorithm, decision trees, random forests, and boosted ensembles. Through practical and real-life applications of ML to Risk Management, students will learn to identify the best technique to apply to a particular risk management problem, from credit risk measurement, fraud detection, portfolio selection to climate change, and ESG applications.