Basic introduction to concepts and skills in Information Sciences: human-computer interfaces, representing information digitally, organizing and searching information on the internet, principles of algorithmic problem solving, introduction to database concepts, and introduction to programming in Python.
Introduction to elementary computing concepts and Python programming with domain-specific applications. Shared CS concepts and Python programming lectures with track-specific sections. Track themes will vary but may include computing for the social sciences, computing for economics and finance, digital humanities, and more. Intended for nonmajors. Students may only receive credit for one of ENGI E1006 or COMS W1002.
Introduction to elementary computing concepts and Python programming with domain-specific applications. Shared CS concepts and Python programming lectures with track-specific sections. Track themes will vary but may include computing for the social sciences, computing for economics and finance, digital humanities, and more. Intended for nonmajors. Students may only receive credit for one of ENGI E1006 or COMS W1002.
Introduction to elementary computing concepts and Python programming with domain-specific applications. Shared CS concepts and Python programming lectures with track-specific sections. Track themes will vary but may include computing for the social sciences, computing for economics and finance, digital humanities, and more. Intended for nonmajors. Students may only receive credit for one of ENGI E1006 or COMS W1002.
Introduction to elementary computing concepts and Python programming with domain-specific applications. Shared CS concepts and Python programming lectures with track-specific sections. Track themes will vary but may include computing for the social sciences, computing for economics and finance, digital humanities, and more. Intended for nonmajors. Students may only receive credit for one of ENGI E1006 or COMS W1002.
A general introduction to computer science for science and engineering students interested in majoring in computer science or engineering. Covers fundamental concepts of computer science, algorithmic problem-solving capabilities, and introductory Java programming skills. Assumes no prior programming background. Columbia University students may receive credit for only one of the following two courses: 1004 or 1005.
An interdisciplinary course in computing intended for first year SEAS students. Introduces computational thinking, algorithmic problem solving and Python programming with applications in science and engineering. Assumes no prior programming background.
Peer-led weekly seminar intended for first and second year undergraduates considering a major in Computer Science. Pass/fail only. May not be used towards satisfying the major or SEAS credit requirements.
Introduction to software development tools and environments. Each section devoted to a specific tool or environment. One-point sections meet for two hours each week for half a semester, and two point sections include an additional two-hour lab.
Introduction to software development tools and environments. Each section devoted to a specific tool or environment. One-point sections meet for two hours each week for half a semester, and two point sections include an additional two-hour lab.
A course in designing, documenting, coding, and testing robust computer software, according to object-oriented design patterns and clean coding practices. Taught in Java.Object-oriented design principles include: use cases; CRC; UML; javadoc; patterns (adapter, builder, command, composite, decorator, facade, factory, iterator, lazy evaluation, observer, singleton, strategy, template, visitor); design by contract; loop invariants; interfaces and inheritance hierarchies; anonymous classes and null objects; graphical widgets; events and listeners; Java's Object class; generic types; reflection; timers, threads, and locks.
Data types and structures: arrays, stacks, singly and doubly linked lists, queues, trees, sets, and graphs. Programming techniques for processing such structures: sorting and searching, hashing, garbage collection. Storage management. Rudiments of the analysis of algorithms. Taught in Java. Note: Due to significant overlap, students may receive credit for only one of the following three courses: COMS W3134, COMS W3136, COMS W3137.
A second programming course intended for nonmajors with at least one semester of introductory programming experience. Basic elements of programming in C and C++, arraybased data structures, heaps, linked lists, C programming in UNIX environment, object-oriented programming in C++, trees, graphs, generic programming, hash tables. Due to significant overlap, students may only receive credit for either COMS W3134, W3136, or W3137.
C programming language and Unix systems programming. Also covers Git, Make, TCP/IP networking basics, C++ fundamentals.
Logic and formal proofs, sequences and summation, mathematical induction, binomial coefficients, elements of finite probability, recurrence relations, equivalence relations and partial orderings, and topics in graph theory (including isomorphism, traversability, planarity, and colorings).
Regular languages: deterministic and non-deterministic finite automata, regular expressions. Context-free languages: context-free grammars, push-down automata. Turing machines, the Chomsky hierarchy, and the Church-Turing thesis. Introduction to Complexity Theory and NP-Completeness.
Broader impact of computers. Social networks and privacy. Employment, intellectual property, and the media. Science and engineering ethics. Suitable for nonmajors.
Fundamentals of computer organization and digital logic. Boolean algebra, Karnaugh maps, basic gates and components, flipflops and latches, counters and state machines, basics of combinational and sequential digital design. Assembly language, instruction sets, ALU’s, single-cycle and multi-cycle processor design, introduction to pipelined processors, caches, and virtual memory.
The fundamentals of database design and application development using databases: entity-relationship modeling, logical design of relational databases, relational data definition and manipulation languages, SQL, XML, query processing, physical database tuning, transaction processing, security. Programming projects are required.
Prerequisites: (COMS W3134 or COMS W3136 or COMS W3137) and (COMS W3157 or COMS W4118 or CSEE W4119) Design and implementation of large-scale distributed and cloud systems. Teaches abstractions, design and implementation techniques that enable the building of fast, scalable, fault-tolerant distributed systems. Topics include distributed communication models (e.g. sockets, remote procedure calls, distributed shared memory), distributed synchronization (clock synchronization, logical clocks, distributed mutex), distributed file systems, replication, consistency models, fault tolerance, distributed transactions, agreement and commitment, Paxos-based consensus, MapReduce infrastructures, scalable distributed databases. Combines concepts and algorithms with descriptions of real-world implementations at Google, Facebook, Yahoo, Microsoft, LinkedIn, etc.
Modern programming languages and compiler design. Imperative, object-oriented, declarative, functional, and scripting languages. Language syntax, control structures, data types, procedures and parameters, binding, scope, run-time organization, and exception handling. Implementation of language translation tools including compilers and interpreters. Lexical, syntactic and semantic analysis; code generation; introduction to code optimization. Teams implement a language and its compiler.
Design and implementation of operating systems. Topics include process management, process synchronization and interprocess communication, memory management, virtual memory, interrupt handling, processor scheduling, device management, I/O, and file systems. Case study of the UNIX operating system. A programming project is required.
Modern software engineering concepts and practices including topics such as Software-as-a-Service, Service-oriented Architecture, Agile Development, Behavior-driven Development, Ruby on Rails, and Dev/ops.
Software lifecycle using frameworks, libraries and services. Major emphasis on software testing. Centers on a team project.
Introduction to computer graphics. Topics include 3D viewing and projections, geometric modeling using spline curves, graphics systems such as OpenGL, lighting and shading, and global illumination. Significant implementation is required: the final project involves writing an interactive 3D video game in OpenGL.
An intensive introduction to image processing - digital filtering theory, image enhancement, image reconstruction, antialiasing, warping, and the state of the art in special effects. Topics from the basis of high-quality rendering in computer graphics and of low-level processing for computer vision, remote sensing, and medical imaging. Emphasizes computational techniques for implementing useful image-processing functions.
Introduction to the theory and practice of computer user interface design, emphasizing the software design of graphical user interfaces. Topics include basic interaction devices and techniques, human factors, interaction styles, dialogue design, and software infrastructure. Design and programming projects are required.
Introduction to security. Threat models. Operating system security features. Vulnerabilities and tools. Firewalls, virtual private networks, viruses. Mobile and app security. Usable security. Note: May not earn credit for both W4181 and W4180 or W4187.
Hands-on analysis of malware. How hackers package and hide malware and viruses to evade analysis. Disassemblers, debuggers, and other tools for reverse engineering. Deep study of Windows Internals and x86 assembly.
Prerequisites: (COMS W3134 or COMS W3136COMS W3137) and (COMS W3203) Introduction to the design and analysis of efficient algorithms. Topics include models of computation, efficient sorting and searching, algorithms for algebraic problems, graph algorithms, dynamic programming, probabilistic methods, approximation algorithms, and NP-completeness.
Develops a quantitative theory of the computational difficulty of problems in terms of the resources (e.g. time, space) needed to solve them. Classification of problems into complexity classes, reductions, and completeness. Power and limitations of different modes of computation such as nondeterminism, randomization, interaction, and parallelism.
Methods for organizing data, e.g. hashing, trees, queues, lists,priority queues. Streaming algorithms for computing statistics on the data. Sorting and searching. Basic graph models and algorithms for searching, shortest paths, and matching. Dynamic programming. Linear and convex programming. Floating point arithmetic, stability of numerical algorithms, Eigenvalues, singular values, PCA, gradient descent, stochastic gradient descent, and block coordinate descent. Conjugate gradient, Newton and quasi-Newton methods. Large scale applications from signal processing, collaborative filtering, recommendations systems, etc.
An introduction to modern cryptography, focusing on the complexity-theoretic foundations of secure computation and communication in adversarial environments; a rigorous approach, based on precise definitions and provably secure protocols. Topics include private and public key encryption schemes, digital signatures, authentication, pseudorandom generators and functions, one-way functions, trapdoor functions, number theory and computational hardness, identification and zero knowledge protocols.
Hands-on introduction to solving open-ended computational problems. Emphasis on creativity, cooperation, and collaboration. Projects spanning a variety of areas within computer science, typically requiring the development of computer programs. Generalization of solutions to broader problems, and specialization of complex problems to make them manageable. Team-oriented projects, student presentations, and in-class participation required.
Team project centered course focused on principles of planning, creating, and growing a technology venture. Topics include: identifying and analyzing opportunities created by technology paradigm shifts, designing innovative products, protecting intellectual property, engineering innovative business models.
Prior knowledge of Python is recommended. Provides a broad understanding of the basic techniques for building intelligent computer systems. Topics include state-space problem representations, problem reduction and and-or graphs, game playing and heuristic search, predicate calculus, and resolution theorem proving, AI systems and languages for knowledge representation, machine learning and concept formation and other topics such as natural language processing may be included as time permits.
Computational approaches to natural language generation and understanding. Recommended preparation: some previous or concurrent exposure to AI or Machine Learning. Topics include information extraction, summarization, machine translation, dialogue systems, and emotional speech. Particular attention is given to robust techniques that can handle understanding and generation for the large amounts of text on the Web or in other large corpora. Programming exercises in several of these areas.
Introductory course in computer vision. Topics include image formation and optics, image sensing, binary images, image processing and filtering, edge extraction and boundary detection, region growing and segmentation, pattern classification methods, brightness and reflectance, shape from shading and photometric stereo, texture, binocular stereo, optical flow and motion, 2D and 3D object representation, object recognition, vision systems and applications.
This course will introduce modern probabilistic machine learning methods using applications in data analysis tasks from functional genomics, where massively-parallel sequencing is used to measure the state of cells: e.g. what genes are being expressed, what regions of DNA (“chromatin”) are active (“open”) or bound by specific proteins.
Topics from generative and discriminative machine learning including least squares methods, support vector machines, kernel methods, neural networks, Gaussian distributions, linear classification, linear regression, maximum likelihood, exponential family distributions, Bayesian networks, Bayesian inference, mixture models, the EM algorithm, graphical models and hidden Markov models. Algorithms implemented in MATLAB.
Causal Inference theory and applications. The theoretical topics include the 3-layer causal hierarchy, causal bayesian networks, structural learning, the identification problem and the do-calculus, linear identifiability, bounding, and counterfactual analysis. The applied part includes intersection with statistics, the empirical-data sciences (social and health), and AI and ML.
Focuses on advanced topics in computer architecture, illustrated by case studies from classic and modern processors. Fundamentals of quantitative analysis. Pipelining. Memory hierarchy design. Instruction-level and thread-level parallelism. Data-level parallelism and graphics processing units. Multiprocessors. Cache coherence. Interconnection networks. Multi-core processors and systems-on-chip. Platform architectures for embedded, mobile, and cloud computing.
Design and programming of System-on-Chip (SoC) platforms. Topics include: overview of technology and economic trends, methodologies and supporting CAD tools for system-level design, models of computation, the SystemC language, transaction-level modeling, software simulation and virtual platforms, hardware-software partitioning, high-level synthesis, system programming and device drivers, on-chip communication, memory organization, power management and optimization, integration of programmable processor cores and specialized accelerators. Case studies of modern SoC platforms for various classes of applications.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Selected topics in computer science. Content and prerequisites vary between sections and semesters. May be repeated for credit. Check “topics course” webpage on the department website for more information on each section.
Topics in Software engineering arranged as the need and availability arises. Topics are usually offered on a one-time basis. Since the content of this course changes, it may be repeated for credit with advisor approval. Consult the department for section assignment.
Introduction to queuing analysis and simulation techniques. Evaluation of time-sharing and multiprocessor systems. Topics include priority queuing, buffer storage, and disk access, interference and bus contention problems, and modeling of program behaviors.
Corequisite: COMS 4180W. The state of threats against computers, and networked systems. An overview of computer security solutions and why they fail. Provides a detailed treatment for Network and Host-based Intrusion Detection and Intrusion Prevention systems. Considerable depth is provided on anomaly detection systems to detect new attacks. Covers issues and problems in email (spam, and viruses) and insider attacks (masquerading and impersonation).
Continuation of CSOR W4231.