Basic scientific and engineering principles used for the design of buildings, bridges, and other parts of the built infrastructure. Application of principles to analysis and design of actual large-scale structures. Coverage of the history of major structural design innovations and of the engineers who introduced them. Critical examination of the unique aesthetic/artistic perspectives inherent in structural design. Consideration of management, socioeconomic, and ethical issues involved in design and construction of large-scale structures. Introduction to recent developments in sustainable engineering, including green building design and adaptable structural systems.
Kinematics of rigid bodies; momentum and energy methods; vibrations of discrete and continuous systems; eigen-value problems, natural frequencies and modes. Basics of computer simulation of dynamics problems using MATLAB or Mathematica.
Material behavior and constitutive relations. Mechanical properties of metals and cement composites. Structural materials. Modern construction materials. Experimental investigation of material properties and behavior of structural elements including fracture, fatigue, bending, torsion, buckling.
Methods of structural analysis. Trusses, arches, cables, frames; influence lines; deflections; force method; displacement method; computer applications.
Design criteria for varied structural applications, including buildings and bridges; design of elements using steel, concrete, masonry, wood, and other materials.
Corequisites: CIEN E3125. Introduction to software for structural analysis and design with lab. Applications to the design of structural elements and connections.
Capstone design project in civil engineering. This project integrates structural, geotechnical and environmental/water resources design problems with construction management tasks and sustainability, legal and other social issues. Project is completed in teams, and communication skills are stressed. Outside lecturers will address important current issues in engineering practice. Every student in the course will be exposed with equal emphasis to issues related to geotechnical engineering, water resources / environmental engineering, structural engineering, and construction engineering and management.
Index properties and classification; compaction; permeability and seepage; effective stress and stress distribution; shear strength of soil; consolidation; slope stability.
Introduction to the challenges and realities of implementing design solutions with high-risk, low-resource communities in urban and rural settings in both developed and developing countries. History and theory of international development towards preparing globally responsible and informed professionals. Real-world examples of development work across technical sectors including water, sanitation, energy, health, communication technology, shelter, food systems, and environment. Role of engineering in achieving the Sustainable Development Goals. Course projects follow a Design for Impact process resulting in an engineering design, an action plan, and the identification of indicators for impact evaluation.
A project on civil engineering subjects approved by the chairman of the department.
A project on civil engineering subjects approved by the chairman of the department.
CEEM undergraduate students only. Written application must be made prior to registration outlining proposed internship/study program. Final reports required. May not be taken for pass/fail credit or audited. International students must also consult with the International Students and Scholars Office.
Numerical and symbolic (algebraic) problem solving with Mathematica. Formulation for graphics application in civil, mechanical, and bioengineering. Example of two-and three-dimensional curve and surface objects in C++ and Mathematica; special projects of interest to electrical and computer science.
Introduction to urban data analytics (analysis and visualization of new types of ‘big’ urban data, statistical tools for urban data analysis, machine learning methods, data privacy). Conceptualization of cities as complex adaptive systems (coarse-graining of urban dynamics, network models for infrastructure interdependencies, agent-based urban simulation). Integrated urban infrastructure systems design (basic design solutions for coupled, people-centric, and climate-resilient civil infrastructure systems, Monte Carlo simulations for infrastructure scenario generation).
Bridge design history, methods of analysis, loads: static, live, dynamic. Design: allowable stress, ultimate strength, load resistance factor, supply/demand. Steel and concrete superstructures: suspension, cable stayed, prestressed, arches. Management of the assets, life-cycle cost, expected useful life, inspection, maintenance, repair, reconstruction. Bridge inventories, condition assessments, data acquisition and analysis, forecasts. Selected case histories and field visits.
Basic concepts of seismology. Earthquake characteristics, magnitude, response spectrum, dynamic response of structures to ground motion. Base isolation and earthquake-resistant design. Wind loads and aeroelastic instabilities. Extreme winds. Wind effects on structures and gust factors.
Stress and deformation formulation in two-and three-dimensional solids; viscoelastic and plastic material in one and two dimensions energy methods.
Introduction to the principles, methods and tools necessary to manage design and construction processes. Elements of planning, estimating, scheduling, bidding and contractual relationships. Valuation of project cash flows. Critical path method. Survey of construction procedures. Cost control and effectiveness. Field supervision.
Current methods of construction, cost-effective designs, maintenance, safe work environment. Design functions, constructability, site and environmental issues.
Planning and financing of capital facilities with a strong emphasis upon civil infrastructure systems. Project feasibility and evaluation. Design of project delivery systems to encourage best value, innovation and private sector participation. Fundamentals of engineering economy and project finance. Elements of life cycle cost estimation and decision analysis. Environmental, institutional, social and political factors. Case studies from transportation, water supply and wastewater treatment.
Practical focus upon legal concepts applicable to the construction industry. Provides sufficient understanding to manage legal aspects, instead of being managed by them. Topics include contractual relationships, contract performance, contract flexibility and change orders, liability and negligence, dispute avoidance/resolution, surety bonds, insurance and site safety.
Core concepts of strategic planning, management and analysis within the construction industry. Industry analysis, strategic planning models and industry trends. Strategies for information technology, emerging markets and globalization. Case studies to demonstrate key concepts in real-world environments.
Capstone practicum where teams develop strategies and business plans for a new enterprise in the engineering and construction industry. Identification of attractive market segments and locations; development of an entry strategy; acquisition of financing, bonding and insurance; organizational design; plans for recruiting and retaining personnel; personnel compensation/incentives. Invited industry speakers. Priority given to graduate students in Construction Engineering and Management.
Examination of the fundamentals of infrastructure planning and management, with a focus on the application of rational methods that support infrastructure decision-making. Institutional environment and issues. Decision-making under certainty and uncertainty. Capital budgeting and financing. Group decision processes. Elements of decision and finance theory. Priority given to graduate students in Construction Engineering and Management.
Introduction to financial mechanics of public and private real-estate development and management. Working from perspectives of developers, investors and taxpayers, financing of several types of real estate and infrastructure projects are covered. Basics of real-estate accounting and finance, followed by in-depth studies of private, public, and public/private-partnership projects and their financial structures. Focused on U.S.-based financing, with some international practices introduced and explored. Financial risks and rewards, and pertinent capital markets and their financing roles. Impacts and incentives of various government programs, such as LEED certification and solar power tax credits. Case studies provide opportunity to compare U.S. practices to several international methods.
Delivery of infrastructure assets through Public-Private Partnerships (PPP). Value for Money analysis. Project organization. Infrastructure sector characterization. Risk analysis, allocation and mitigation. Monte Carlo methods and Real Options. Project finance and financing instruments. Case studies from transportation, water supply and energy sectors.
Focused on broadening knowledge of AEC data management. Use of industry data sets from the design, construction, and operations of buildings to learn and practice data management and solve problems by aggregating industry data and creating data-driven reports in dashboard format. Exploration of industry data through ELT (Extract, Load, Transform) Services. Hands-on learning experiences through a series of workshops and case studies. Guides where predictive analysis is performed and how it is used for Project Management Information System (PMIS) and Facility Management (FM), leading to Digital Twin data management, data processing, and data visualization.
Expose students to various aspects of project management in the construction industry, enhance learning experience with real-world challenges and prepare for internships and future employment. Run for two semesters. First semester focuses on Traditional Project Management, and second semester focuses on Agile Project Management. For class project, development of a Project Management Plan (PMP) and an Operations Dashboard based on real-life examples of contracts (traditional project management) and operational excellence initiatives (agile project management).
Static flexural response of thin, elastic, rectangular, and circular plates. Exact (series) and approximate (Ritz) solutions. Circular cylindrical shells. Axisymmetric and non-axisymmetric membrane theory. Shells of arbitrary shape.
Review of loads and structural design approaches. Material considerations in structural steel design. Behavior and design of rolled steel, welded, cold-formed light-gauge, and composite concrete/steel members. Design of multi-story buildings and space structures.
Modern challenges in the design of large-scale building structures will be studied. Tall buildings, large convention centers and major sports stadiums present major opportunities for creative solutions and leadership on the part of engineers. This course is designed to expose the students to this environment by having them undertake the complete design of a large structure from initial design concepts on through all the major design decisions. The students work as members of a design team to overcome the challenges inherent in major projects. Topics include overview of major projects, project criteria and interface with architecture, design of foundations and structural systems, design challenges in the post 9/11 environment and roles, responsibilities and legal issues.
Research training course. Recommended in preparation for laboratory related research.
May be repeated for credit, but no more than 3 total points may be used for degree credit. Only for Civil Engineering and Engineering Mechanics graduate students who include relevant off-campus work experience as part of their approved program of study. Final report and letter of evaluation required. May not be taken for pass/fail credit or audited.
Review of random variables. Random process theory: stationary and ergodic processes, correlation functions and power spectra, non-stationary, non-white and non-Gaussian processes. Uncertainty quantification and simulation of environmental excitations and material/media properties, even when subject to limited/incomplete data: joint time-frequency analysis, sparse representations and compressive sampling concepts and tools. Stochastic dynamics and reliability assessment of diverse engineering systems: complex nonlinear/hysteretic behaviors and/or fractional derivative modeling. Emphasis on solution methodologies based on Monte Carlo simulation, statistical linearization, and Wiener path integral. Examples from civil, marine, mechanical and aerospace engineering.
A fluid infiltrating porous solid is a multiphase material whose mechanical behavior is significantly influenced by the pore fluid. Diffusion, advection, capillarity, heating, cooling, and freezing of pore fluid, buildup of pore pressure, and mass exhanges among solid and fluid constituents all influence the stability and integrity of the solid skeleton, causing shrinkage, swelling, fracture, or liquefaction. These coupling phenomena are important for numerous disciplines, including geophysics, biomechanics, and material sciences. Fundamental principles of poromechanics essential for engineering practice and advanced study on porous media. Topics include balance principles, Biot’s poroelasticity, mixture theory, constitutive modeling of path independent and dependent multiphase materials, numerical methods for parabolic and hyperbolic systems, inf-sup conditions, and common stabilization procedures for mixed finite element models, explicit and implicit time integrators, and operator splitting techniques for poromechanics problems.
FE formulation for beams and plates. Generalized eigenvalue problems (vibrations and buckling). FE formulation for time-dependent parabolic and hyperbolic problems. Nonlinear problems, linearization, and solution algorithms. Geometric and material nonlinearities. Introduction to continuum mechanics. Total and updated Lagrangian formulations. Hyperelasticity and plasticity. Special topics: fracture and damage mechanics, extended finite element method.
The formulations and solution strategies for finite element analysis of nonlinear problems are developed. Topics include the sources of nonlinear behavior (geometric, constitutive, boundary condition), derivation of the governing discrete equations for nonlinear systems such as large displacement, nonlinear elasticity, rate independent and dependent plasticity and other nonlinear constitutive laws, solution strategies for nonlinear problems (e.g. incrementation, iteration), and computational procedures for large systems of nonlinear algebraic equations.
Ordinary and partial differential equations. Turbulence phenomenology; spatial and temporal scales in turbulent flows; statistical description, filtering and Reynolds decomposition, equations governing the resolved flow, fluctuations and their energetics; turbulence closure problem for RANS and LES; two equation turbulence models and second moment closures.
Advanced study in a specialized field under the supervision of a member of the department staff. Before registering, the student must submit an outline of the proposed work for approval of the supervisor and the department chair.
All doctoral students are required to attend the department seminar as long as they are in residence. No degree credit is granted.
A candidate for the Eng.Sc.D. degree in civil engineering must register for 12 points of doctoral research instruction. Registration in CIEN E9800 may not be used to satisfy the minimum residence requirement for the degree.
A candidate for the doctorate may be required to register for this course every term after the students coursework has been completed and until the dissertation has been accepted.