Elements of statics; dynamics of a particle and systems of particles.
Introduction to basic probability; hazard function; reliability function; stochastic models of natural and technological hazards; extreme value distributions; Monte Carlo simulation techniques; fundamentals of integrated risk assessment and risk management; topics in risk-based insurance; case studies involving civil infrastructure systems, environmental systems, mechanical and aerospace systems, construction management. Not open to undergraduate students.
Stress and strain. Mechanical properties of materials. Axial load, bending, shear, and torsion. Stress transformation. Deflection of beams. Buckling of columns. Combined loadings. Thermal stresses.
Design of steel members in accordance with AISC 360: moment redistribution in beams; plastic analysis; bearing plates; beam-columns: exact and approximate second-order analysis; design by the Effective Length method and the Direct Analysis method. Design of concrete members in accordance with ACI 318: bar anchorage and development length, bar splices, design for shear, short columns, slender columns. AISC/ASCE NSSBC design project: design of a steel bridge in accordance with National Student Steel Bridge Competition rules; computer simulation and design by using SAP2000.
Introduction to Project Management for design and construction processes. Elements of planning, estimating, scheduling, bidding, and contractual relationships. Computer scheduling and cost control. Critical path method. Design and construction activities. Field supervision.
Index properties and classification; compaction; permeability and seepage; effective stress and stress distribution; shear strength of soil; consolidation; slope stability.
Fluid statics. Fundamental principles and concepts of flow analysis. Differential and finite control volume approach to flow analysis. Dimensional analysis. Application of flow analysis: flow in pipes, external flow, flow in open channels.
Focus on formulation and application of the finite element to engineering problems such as stress analysis, heat transfer, fluid flow, and electromagnetics. Topics include finite ele?ment formulation for one-dimensional problems, such as trusses, electrical and hydraulic systems; scalar field problems in two dimensions, such as heat transfer; and vector field problems, such as elasticity and finally usage of the commercial finite element program. Students taking ENME E3332 cannot take ENME E4332.
Engineering economic concepts. Basic spreadsheet analysis and programming skills. Subject to instructor's permission. Infrastructure design and systems concepts, analysis, and design under competing/conflicting objectives, transportation network models, traffic assignments, optimization, and the simplex algorithm.
Introduction to basic probability; hazard function; reliability function; stochastic models of natural and technological hazards; extreme value distributions; Monte Carlo simulation techniques; fundamentals of integrated risk assessment and risk management; topics in risk-based insurance; case studies involving civil infrastructure systems, environmental systems, mechanical and aerospace systems, construction management. Not open to undergraduate students.
Criterion of energy harvesting, identification of energy sources. Theory of vibrations of discrete and continuous system, measurement and analysis. Selection of materials for energy conversion, piezoelectric, electromagnetic, thermoelectric, photovoltaic, etc. Design and characterization, modeling and fabrication of vibration, motion, wind, wave, thermal gradient, and light energy harvesters; resonance phenomenon, power electronics and energy storage and management. Applications to buildings, geothermal systems, and transportation. To alternate with ENME E4115.
Advanced analysis and design methodologies and impact on efficient use of building materials. Effects on quality and safety in design of structures. Utilization of advanced techniques as prescribed by building code requirements for steel and concrete structures (AISC and ACI).
Introduction to the principles, methods and tools necessary to manage design and construction processes. Elements of planning, estimating, scheduling, bidding and contractual relationships. Valuation of project cash flows. Critical path method. Survey of construction procedures. Cost control and effectiveness. Field supervision.
Introduction to the design of systems that support construction activities and operations. Determination of design loads during construction. Design of excavation support systems, earth retaining systems, temporary supports and underpinning, concrete formwork and shoring systems. Cranes and erection systems. Tunneling systems. Instrumentation and monitoring. Students prepare and present term projects.
Current methods of construction, cost-effective designs, maintenance, safe work environment. Design functions, constructability, site and environmental issues.
Planning and financing of capital facilities with a strong emphasis upon civil infrastructure systems. Project feasibility and evaluation. Design of project delivery systems to encourage best value, innovation and private sector participation. Fundamentals of engineering economy and project finance. Elements of life cycle cost estimation and decision analysis. Environmental, institutional, social and political factors. Case studies from transportation, water supply and wastewater treatment.
Practical focus upon legal concepts applicable to the construction industry. Provides sufficient understanding to manage legal aspects, instead of being managed by them. Topics include contractual relationships, contract performance, contract flexibility and change orders, liability and negligence, dispute avoidance/resolution, surety bonds, insurance and site safety.
Core concepts of strategic planning, management and analysis within the construction industry. Industry analysis, strategic planning models and industry trends. Strategies for information technology, emerging markets and globalization. Case studies to demonstrate key concepts in real-world environments.
History and development of Building Information Modeling (BIM), its uses in design and construction, and introduction to the importance of planning in BIM implementation. Role of visual design and construction concepts and methodologies, including integrated project delivery form in architecture, engineering, and construction industries from project design, cost estimating, scheduling, coordination, fabrication, installation, and financing.
A definitive review of and comprehensive introduction to construction industry best practices and fundamental concepts of environmental health and safety management systems (EH&S) for the construction management field. How modern EH&S management system techniques and theories not only result in improved safe work environments but ultimately enhance operational processes and performance in construction projects.
Complex global construction industry environment. Social, cultural, technological, and political risks; technical, financial, and contractual risk. Understanding of successful global project delivery principals and skills for construction professionals. Industry efforts and trends to support global operational mechanism. Global Case Studies. Engage with industry expert professionals. Student group projects with active ongoing global initiatives.
Comprehensive review of various engineering disciplines in the process of real estate land development. Engineering disciplines covered include civil, infrastructure, transportation planning, environmental planning, permitting, environmental remediation, geotechnical, and waterfront/marine. Overview of land use and environmental law, architecture and urban planning, as related to land development. Discussion of how these subjects affect decisions—cost, schedule, programming—involved in real estate development.
Frequencies and modes of discrete and continuous elastic systems. Forced vibrations-steady-state and transient motion. Effect of damping. Exact and approximate methods. Applications.
Design of concrete beams for combined torsion, shear and flexure; moment-curvature relation; bar cut-off locations; design of two-way slabs; strut-and-tie method for the design of deep beams and corbels; gravity and shear wall design; retaining wall design.
Fundamental considerations of wave mechanics; design philosophies; reliability and risk concepts; basics of fluid mechanics; design of structures subjected to blast; elements of seismic design; elements of fire design; flood considerations; advanced analysis in support of structural design.
Bearing capacity and settlement of shallow and deep foundations; earth pressure theories; retaining walls and reinforced soil retaining walls; sheet pile walls; braced excavation; slope stability.
Theoretical, computational, and data-driven/machine learning techniques to derive, test, and validate computer models for solid mechanics (e.g., soil, rubber, and metals). Machine learning and data-driven simulations enabled by deep learning.
Utilization of data in everyday civil infrastructure. Optimization of decision-making for owners, facility managers, and policy-makers based on predictive results. Provides students with basic understanding of machine learning concepts and methods to formulate civil engineering problems to prediction problems. Introduces students to classic machine learning algorithms, deep learning algorithms, algorithmic thinking, and probabilistic views, and their applications in existing civil engineering problems.
Direct stiffness approach for trusses. Strong and weak forms for one-dimensional problems. Galerkin finite element formulation, shape functions, Gauss quadrature, convergence. Multidimensional scalar field problems (heat conduction), triangular and rectangular elements, Isoparametric formulation. Multidimensional vector field problems (linear elasticity). Practical FE modeling with commercial software (ABAQUS). Computer implementation of the finite element method. Advanced topics. Not open to undergraduate students.
Introduction to multiscale analysis. Information-passing bridging techniques: among them, generalized mathematical homogenization theory, the heterogeneous multiscale method, variational multiscale method, the discontinuous Galerkin method and the kinetic Monte Carlo–based methods. Concurrent multiscale techniques: domain bridging, local enrichment, and multigrid-based concurrent multiscale methods. Analysis of multiscale systems.
Special topics sections arranged as the need and availability arises. Topics are usually offered on a one-time basis. Since the content of this course changes each time it is offered, it may be repeated for credit.
Review of continuum mechanics in Cartesian coordinates; tensor calculus and the calculus of variation; large deformations in curvilinear coordinates; electricity problems and applications.
Constitutive equations of viscoelastic and plastic bodies. Formulation and methods of solution of the boundary value, problems of viscoelasticity and plasticity.