Advance chemical-engineering problem-solving skills through the use of computational tools (primarily developed in Excel or Python). Examples are drawn from thermodynamics, transport phenomena, and chemical kinetics. The course is project based, emphasizing data analysis and report writing. Unstructured collaboration with peers is highly encouraged. Requisite numerical methods and Chemical Engineering concepts introduced.
Reaction kinetics, applications to the design of batch and continuous reactors. Multiple reactions, non-isothermal reactors. Analysis and modeling of reactor behavior.
Emphasizes active, experiment-based resolution of open-ended problems involving use, design, and optimization of equipment, products, or materials. Under faculty guidance students formulate, carry out, validate, and refine experimental procedures, and present results in oral and written form. Develops analytical, communications, and cooperative problem-solving skills in the context of problems that span from traditional, large scale separations and processing operations to molecular level design of materials or products. Sample projects include: scale up of apparatus, process control, chemical separations, microfluidics, surface engineering, molecular sensing, and alternative energy sources. Safety awareness is integrated.
Mathematical description of chemical engineering problems and the application of selected methods for their solution. General modeling principles, including model hierarchies. Linear and nonlinear ordinary differential equations and their systems, including those with variable coefficients. Partial differential equations in Cartesian and curvilinear coordinates for the solution of chemical engineering problems.
Develops and applies non-equilibrium thermodynamics for modeling of transport phenomena in fluids and their mixtures. Continuum balances of mass, energy and momentum for pure fluids; non-equilibrium thermodynamic development of Newtons law of viscosity and Fouriers law; applications (conduction dominated energy transport, forced and free convection energy transport in fluids); balance laws for fluid mixtures; non-equilibrium thermodynamic development of Ficks law; applications (diffusion-reaction problems, analogy between energy and mass transport processes, transport in electrolyte solutions, sedimentation).
Boltzmann’s entropy hypothesis and its restatement to calculate the Helmholtz and Gibbs free energies and the grand potential. Applications to interfaces, liquid crystal displays, polymeric materials, crystalline solids, heat capacity and electrical conductivity of crystalline materials, fuel cell solid electrolytes, rubbers, surfactants, molecular self assembly, ferroelectricity. Computational methods for molecular systems. Monte Carlo (MC) and molecular dynamics (MD) simulation methods. MC method applied to liquid-gas and ferromagnetic phase transitions. Deterministic MD simulations of isolated gases and liquids. Stochastic MD simulation methods.
Design and analysis of unit operations employed in chemical engineering separations. Fundamental aspects of single and multistaged operations using both equilibrium and rate-based methods. Examples include distillation, absorption and stripping, extraction, membranes, crystallization, bioseparations, and environmental applications.
Complex reactive systems. Catalysis. Heterogeneous systems, with an emphasis on coupled chemical kinetics and transport phenomena. Reactions at interfaces (surfaces, aerosols, bubbles). Reactions in solution.
Approaches used in chemistry and chemical engineering to design green, sustainable products and processes; focus of using the tenets of green chemistry as a means for chemical innovation. Technical and design practice and measuring the impacts of green and conventional approaches emphasized. Themes of business, regulatory, ethical, and social considerations relevant to chemical engineering practice.
Scientific and economic analysis of real-world technologies for climate change mitigation and adaptation. Partner with students from the business school to assess and assigned technology based on technical viability, commercial opportunity, and impact on mitigating or adapting to climate change. Assigned technologies provided by the investment community to teams of four, with expectations for independent research on the technologies, with deliverables of written and oral presentations.
Aimed at seniors and graduate students. Provides classroom experience on chemical engineering process safety as well as Safety in Chemical Engineering certification. Process safety and process control emphasized. Application of basic chemical engineering concepts to chemical reactivity hazards, industrial hygiene, risk assessment, inherently safer design, hazard operability analysis, and engineering ethics. Application of safety to full spectrum of chemical engineering operations.
Students carry out a semester-long process or product design project. The project culminates with a formal written design report and a public presentation.
Self-contained treatments of selected topics in soft materials (e.g. polymers, colloids, amphiphiles, liquid crystals, glasses, powders). Topics and instructor may change from year to year. Intended for junior/senior level undergraduates and graduate students in engineering and the physical sciences.
Course is aimed at senior undergraduate and graduate students. Introduces fundamental concepts of Bayesian data analysis as applied to chemical engineering problems. Covers basic elements of probability theory, parameter estimation, model selection, and experimental design. Advanced topics such as nonparametric estimation and Markov chain Monte Carlo (MEME) techniques are introduced. Example problems and case studies drawn from chemical engineering practice are used to highlight the practical relevance of the material. Theory reduced to practice through programming in Mathematica. Course grade based on midterm and final exams, biweekly homework assignments, and final team project.
The goal of synthetic organogenesis is to use stem cells to reconstitute aspects of embryo development and organ formation in vitro. Examines the molecular basis of human embryogenesis. Introduces synthetic organogenesis as an interdisciplinary field. Students learn to recognize generic molecular mechanisms behind signaling and cell lineage specification. Covers recent advances in applying engineering and contemporary biology to creating organoids and organs on chips using human stem cells.
Many materials properties and chemical processes are governed by atomic-scale phenomena such as phase transformations, atomic/ionic transport, and chemical reactions. Thanks to progress in computer technology and methodological development, now there exist atomistic simulation approaches for the realistic modeling and quantitative prediction of such properties. Atomistic simulations are therefore becoming increasingly important as a complement for experimental characterization, to provide parameters for meso- and macroscale models, and for the in-silico discovery of entirely new materials. This course aims at providing a comprehensive overview of cutting-edge atomistic modeling techniques that are frequently used both in academic and industrial research and engineering. Participants will develop the ability to interpret results from atomistic simulations and to judge whether a problem can be reliably addressed with simulations. The students will also obtain basic working knowledge in standard simulation software.
Course aimed at seniors and graduate students. Provides classroom experience on wine making. Wine making chemistry, design, safety, and process control are emphasized in classroom instruction. Applies basic chemical engineering concepts to chemical reactivity in wine making. Written and oral reports required.
Wine making can be used anywhere in the world and the principles of the fermentation extend into other industries. Academic and industry contributions to the content of chemical engineering concepts in wine making include chemical reactivity hazards, industrial hygiene, risk assessment, inherently safer design, and hazard operability analysis. With the ultimate aim of leaning a skill set and safer operations in the chemical engineering profession, the applications of wine making will be emphasized.
All graduate students are required to attend the department colloquium as long as they are in residence. No degree credit is granted.