Galaxies contain stars, gas dust, and (usually) super-massive black holes. They are found throughout the Universe, traveling through space and occasionally crashing into each other. This course will look at how these magnificent systems form and evolve, and what they can tell us about the formation and evolution of the Universe itself. You cannot enroll in ASTR UN1420 in addition to ASTR BC1754 or ASTR UN1404 and receive credit for both.
This course will explore the unique properties of Earth, compared to other planets in the Solar System, and the possibility of Earth-like planets around other stars. The basics of the Solar System, gravity, and light will be covered, as well as the geology and atmospheres of the terrestrial planets. The properties of Earth that allowed life to develop and whether life can develop on other planets will be discussed. Finally, the discovery of planets beyond our Solar System and the likelihood of another Earth will be a key component of the course.
Prerequisites: recommended preparation: a working knowledge of high school algebra. What is the origin of the chemical elements? This course addresses this question, starting from understanding atoms, and then going on to look at how how atoms make stars and how stars make atoms. The grand finale is a history of the evolution of the chemical elements throughout time, starting from the Big Bang and ending with YOU. You cannot enroll in ASTR W1836 in addition to ASTR BC1754 or ASTR W1404 and receive credit for both.
Laboratory for ASTR UN1404. Projects include use of telescopes, laboratory experiments in the nature of light, spectroscopy, and the analysis of astronomical data. Lab 2 ASTR UN1904 - goes with ASTR BC1754 or ASTR UN1404 (or ASTR UN1836 or ASTR UN1420).
Prerequisites: a working knowledge of calculus. Corequisites: the second term of a course in calculus-based general physics. Continuation of ASTR UN2001; these two courses constitute a full year of calculus-based introduction to astrophysics. Topics include the structure of our galaxy, the interstellar medium, star clusters, properties of external galaxies, clusters of galaxies, active galactic nuclei, and cosmology.
This course explores how magnetic fields shape the cosmos — from the Earth’s magnetosphere and the Sun’s corona to galaxies, clusters, and the cosmic web itself. The course introduces the fundamental physics of plasmas and magnetohydrodynamics (MHD), providing a quantitative framework for understanding how magnetic fields interact with charged matter across vastly different environments. Through lectures, problem sets, and student-led presentations, students learn analytical, numerical, and observational approaches used in modern astrophysics to study magnetic phenomena. By the end of the semester, participants gain the tools to critically read and communicate research on astrophysical magnetism, bridging core physical principles with their diverse cosmic applications.
Prerequisites: one year of general astronomy Introduction to the basic techniques used in obtaining and analyzing astronomical data. Focus on ground-based methods at optical, infrared, and radio wavelengths. Regular use of the telescope facilities atop the roof of the Pupin Labs and at Harriman Observatory. The radio-astronomy portion consists mostly of computer labs, In research projects, students also work on the analysis of data obtained at National Observatories.
Prerequisites: the instructors permission. For an independent research project or independent study, a brief description of the proposed project or reading, with the supervising faculty members endorsement, is required for registration. A variety of research projects conducted under the supervision of members of the faculty. Observational, theoretical, and experimental work in galactic and extragalactic astronomy and cosmology. The topic and scope of the work must be arranged with a faculty member in advance; a written paper describing the results of the project is required at its completion (note that a two-term project can be designed such that the grade YC is given after the first term). Senior majors in astronomy or astrophysics wishing to do a senior thesis should make arrangements in May of their junior year and sign up for a total of 6 points over their final two terms. Both a substantial written document and an oral presentation of thesis results are required.
A broad introduction to galaxies: what they contain; how to describe them; and properties of galactic populations in different environments and at different times. This will include:
- Discussion of galactic dynamics, which describes the gravitational framework within which galaxies form as dark matter and collisionless baryons (i.e. stars/compact objects/BH) interact;
- The physics and properties of the ISM/IGM that shape their baryonic content.
- A synthesis of the previous sections to describe methods to study and the state of our understanding of galaxy formation and evolution.
This two-semester course aims to help our students acquire the foundational skills for a
successful and satisfying professional life. The course will consist of three themes:
1) Discussing greatest hits and frontiers in the field
2) The research process, using the projects that participating students are currently
working on.
3) Navigating science and careers: considering the people and institutions that make up the
field, the frameworks in place that support them and the culture that pervades them;
career pathways